Genetically Engineered *pfabA pfabR* Bacteria: an Electrochemical Whole Cell Biosensor for Detection of Water Toxicity

Tova Neufeld, Dvora Biran, Rachela Popovtzer, Tamir Erez, Eliora Z. Ron, and Judith Rishpon

Downloaded from http://pubs.acs.org on May 5, 2009

More About This Article

Additional resources and features associated with this article are available within the HTML version:

- Supporting Information
- Access to high resolution figures
- Links to articles and content related to this article
- Copyright permission to reproduce figures and/or text from this article

View the Full Text HTML
Genetically Engineered pfabA pfabR Bacteria: an Electrochemical Whole Cell Biosensor for Detection of Water Toxicity

Tova Neufeld,² Dvora Biran,² Rachela Popovtzer,³ Tamir Erez,² Eliora Z. Ron,² and Judith Rishpon*,²

Department of Molecular Microbiology and Biotechnology Faculty of Life Sciences, Tel-Aviv University,
Ramat-Aviv, Israel 69978

We describe here a bacterial sensor for electrochemical detection of toxic chemicals. The sensor constitutes recombinant bacteria harboring plasmids encoding the fabA and fabR genes and has high-resolution amperometric response to membrane-damaging chemicals. For example, it can detect phenol at concentrations ranging between 1.6 and 16 ppm within 20 min. The high sensitivity is achieved by using the fabA promoter fused to a reporter gene-encoded β-galactosidase on a low copy number plasmid, under the control of the FabR repressor. The use of electrochemical whole cell sensors enables sensitive, fast, easy to operate, and cost-effective detection of water toxicity threats.

Polution of water resources is an increasing problem worldwide. Along with the growing industrial and domestic pollution there is the threat of terror-related poisoning. The pollutants constitute a wide variety of toxicants, including chemicals such as phenol and its derivatives, heavy metals, pesticides, and carcinogens. Therefore, detection of specific pollutants is unrealistic, and a general warning of acute water toxicity is essential.

The methods used for monitoring of water toxicants are either analytical or biological. Analytical chemistry provides accurate identification and quantification of specific compounds, but it is costly and time-consuming when the nature of the toxicant is unknown. In addition, analytical methods are not suitable for monitoring bioavailability, toxicity, and genotoxicity.

Biological assays provide a cost-effective determination of general toxicity and genotoxicity of the bioavailable toxicants. Standard toxicity bioassays use organisms such as daphnia or fish. The detection time is in the range of days (24–48 h).¹³ Microorganisms, in particular bacteria, have recently been used extensively for determining toxicity due to their rapid growth, fast response time, low cost, and ease of genetic modifications. There are two main approaches of using bacteria as a whole cell biosensor, known as “turn off” or “turn on” mechanisms. In the “turn off” mechanism, a measurable signal decreases by toxicity, whereas in the “turn on” mechanism, a signal appears following exposure to a toxic compound. The commercial biosassay Microtox (Azur Environmental, Carlsbad, CA) is an example of the toxicity bioassay recognized generically as the Vibrio fischeri bioluminescence inhibition test.

Many recombinant bacteria are based on “turn on” mechanisms and are constructed by fusion of reporter genes to various stress-response promoters (see reviews by Kohler et al.⁷ and Daunert et al.⁸ Stress-induced promoters may be activated by toxic or hazardous chemicals and can be fused to reporter genes to monitor the presence of such chemicals. Among the promoters used are heat shock genes, such as grpE and dnaK, which are sensitive to protein damage; oxidative sensitive genes, such as oxyR; genes sensitive to DNA damage, such as recA; and membrane-damage-responsive elements, such as the fabA gene.⁹–¹¹ The proteins mostly used as reporters are β-galactosidase, measured by a colorimetric reaction and luxCDABE measured by light emission. Recently, the green fluorescence protein (GFP) from jellyfish has also been extensively used as a reporter.¹²,¹³

Electrochemical monitoring is of special interest for in situ measurements, since it can be performed using simple, compact, and mobile equipment and is easily adaptable for on-line measurements. The potential application of electrochemical biosensors in

² Department of Molecular Microbiology and Biotechnology Faculty of Life Sciences
³ Department of Electrical Engineering—Physical Electronics and the TAU Research Institute for Nano Science and Nanotechnologies, Tel-Aviv University, Ramat-Aviv, Israel 69978

* Corresponding author. Phone: +972-3-6409366. Fax: +972-3-6409407. E-mail: judithri@tauex.tau.ac.il.

real-time and on-line monitoring of hydrocarbons and heavy metals has been previously demonstrated.14-17 In addition, electrochemical sensors are especially suitable for designing high-throughput devices, as the highly sensitive miniaturized electrochemical nanobiopip for rapid monitoring of water pollution.18

In this work, an electrochemical bacterial sensor for toxicity measurements based on genetically engineered \textit{Escherichia coli} was constructed. The detection of toxicants is mediated by the \textit{fabA} promoter controlled by the \textit{fabR} gene. The \textit{fabA} gene codes for hydroxydecanoyl-ACP dehydrase, a key enzyme in the synthesis of unsaturated fatty acids, and is induced when fatty acid biosynthesis pathways are interrupted. The use of the \textit{fabA} promoter as the sensing element for membrane damage was previously described by Bechor et al.,19 who fused the \textit{fabA} promoter to the \textit{V. fischeri luxCDABE} reporter gene and obtained a biosensor sensitive to a broad concentration range of phenol and phenol derivatives. The detection limit was 7.3 ppm after 2 h of exposure to phenol.

We constructed a \textit{fabA} promoter fused to the reporter gene \textit{lacZ} that could be used in electrochemical measurement. High sensitivity was achieved by manipulating two factors: low copy number plasmid that contains the \textit{fabA} promoter fused to the reporter gene \textit{lacZ} and a second plasmid that contains the intact gene encoding for the \textit{fabR} repressor gene, known also as \textit{YigC} gene.20-25 The expression from the \textit{fabA} promoter was tightly controlled by the presence of the gene coding for the FabR repressor. These manipulations resulted in a low background, a high signal-to-noise ratio (SNR), and increased sensitivity in detecting membrane-damaging reagents.

MATERIALS AND METHODS

Chemicals, Oligonucleotides and Enzymes. Antibiotics and the optical \(\beta\)-galactosidase substrate, \(p\)-nitro-\(\beta\)-\(\delta\)-galactopyranoside (PNPG) were from Sigma Chemicals, Ltd; \(p\)-amino-\(\beta\)-\(\delta\)-galactopyranoside was synthesized by Prof. Carmeli at the Department of Organic Chemistry, Tel-Aviv University, Israel. DNA primers were purchased from Sigma Chemicals (Israel) Plasmids, and restriction enzymes were from New England BioLab.

Plasmids and Bacteria. Plasmids pBR322 and pACYC184 (New England BioLab), \textit{E. coli} TG1 (Bethesda Research Laboratories, U.S.A.) was used for transformation and plasmid manipulation.

Construction of Plasmids and Biosensor. The \textit{fabA} promoter was obtained by PCR of 230 bp from genomic DNA of \textit{E. coli} (MG1655). The primers used were 5'-AACGCGCGTATCACGATCTCTCCG-3' and 5'-AATCCGGGAGATCTAGGAGTGGAGTGAAGAGAAGTGAAGAAGAAGTG-3', containing the \textit{EagI} and \textit{BspE1} restriction sites, respectively. Following digestion with \textit{EagI} and \textit{BspE1}, the PCR products were ligated into \textit{Eagl} and \textit{BspE1}-digested pBR322, containing ampicillin resistance gene for selection. Plasmid p\textit{fabA} was purified using a Qiagen kit and transformed into \textit{E. coli} MC1061.

The \textit{fabR} gene was obtained by PCR of 1200 bp from genomic DNA of \textit{E. coli} (MG1655). The primers used were 5'-AAGGCACTCTCCG-3' and 5'-ATATCCGGGAGATCTAGGAGTGGAGTGAAGAGAAGTGAAGAAGAAGTG-3', as primers with \textit{XbaI} and \textit{SphI} restriction sites, respectively. Following digestion with \textit{XbaI} and \textit{SphI}, the PCR products were ligated into \textit{Eagl}- and \textit{BspE1}-digested pACYC184 plasmid containing tetracycline resistance. The engineered plasmid was purified using a Qiagen kit and transformed into \textit{E. coli} TG1 strain. After purification, the \textit{pfabR} plasmid was transformed into competent \textit{E. coli} containing \textit{pfabA}. The transformed bacteria were grown on tetracycline and ampicillin to maintain the two plasmids.

The sequence, size, and orientation of the constructed plasmids were verified by DNA–agarose gel, restriction endonuclease analysis, and sequencing. DNA sequencing was performed by the dideoxyribonucleotide chain termination method using an ABI model 377 sequencer (ABI, U.S.A.).

Culturing Procedures. Cultures were grown with aeration at 30 or 37 °C in LB broth or agar with appropriate antibiotics (100 \(\mu\)g/mL of ampicillin and 12.5 \(\mu\)g/mL of tetracycline) when required. For biosensing experiments, \textit{E. coli} harboring both plasmids was grown overnight at 37 °C on LB agar plates with the two antibiotics. A single colony was then picked and grown overnight on 2 mL of the same, but liquid, medium. The overnight culture was diluted 1:100 in LB containing the two antibiotics and grown at 30 °C with aeration by shaking at 250 rpm.

Electrochemical System. The electrochemical system consisted of an eight-channeled multipotentiosistat built by Prof. Yarnitzky from the Technion, Israel Institute of Technology. The potentiostat was interfaced to the PC via an A/D converter, controlled by LabVIEW software. The electrochemical cells contain screen-printed electrodes (SPE) (Gwent, U.K.) and were attached to polystyrene 0.3-ML wells. The SPEs include three electrodes: carbon ink working electrode (3.14 mm²), carbon ink counter electrode, and Ag/AgCl reference electrode printed on a ceramic platform. A specific lab-made apparatus was used for the SPE electrical contacts, combined with a suction–expulsion stirring mechanism manufactured in our laboratory, which was controlled by a resonance regulator operated at a frequency of 8 Hz.

Amperometric Toxicity Measurements. Recombinant bacteria were exposed to the tested chemicals in 300-μL electrochemical cells. The induced \(\beta\)-galactosidase activity was determined amperometrically using the substrate \(p\)-amino-\(\beta\)-\(\delta\)-galactopyranoside at a final concentration of 0.8 mg/mL. The product of the enzymatic reaction, \(p\)-aminophenol (PAP) is oxidized at the
carbon working electrode (220 mV working potential). The electrochemical measurements were performed on-line.

RESULTS AND DISCUSSION

Sensing of Phenol. To construct a biosensor for membrane-damaging agents, such as phenol, we used the fabA gene. This gene codes for hydroxydecannoyl-ACP dehydrase, a key enzyme in the synthesis of unsaturated fatty acids, and is induced when fatty acid biosynthesis pathways are interrupted. The induction process is controlled by the FabR repressor and by the FadR activator. The expression of the fabA gene is kept low by the repressor, which is removed from the promoter in the presence of membrane-damaging agents. The promoter of the fabA gene was fused upstream to a promoterless lacZ gene, coding for the enzyme β-galactosidase. Addition of phenol to bacteria containing the fabA–lacZ fusion results in induction of β-galactosidase activity (Figure 1A). However, the signal-to-noise ratio was small due to a relatively high background (Figure 1A). To reduce the background resulting from the incomplete shut-off of the promoter, we added a plasmid that carries the fabR gene, coding for the repressor of the fabA gene.22 The presence of multiple copies of the represer gene resulted in a reduction of the background level and in a significantly higher signal-to-noise ratio (Figure 1B). In bacteria carrying the cloned repressor gene, induction of the fabA gene was obtained by 6 ppm of phenol, with a fast response time of less than 15 min. Several bacterial concentrations were examined, and a response was obtained in all of them. The optimal bacterial cell concentration was 3 × 10^7 cells/mL, which yielded the highest induction activity relative to background (Figure 1C).

Figure 1. Signal-to-noise measurements. (A) Amperometric signals of β-galactosidase activity obtained with bacteria containing fabA–lacZ plasmid in response to 6 ppm phenol (1) and without phenol (2). (B) Amperometric signals of β-galactosidase activity obtained by different cell concentrations of the bacterial sensor, containing both fabA–lacZ and pfabR plasmids in response to 6 ppm phenol (1) and without phenol (2). (C) Comparison of the β-galactosidase activity induction in the absence or presence of phenol. Activity is presented by ΔA/Δt. Amperometric measurements were performed at 220 mV.

Figure 2. Response of the bacterial pfabA pfabR sensor to phenol. (A) Electrochemical signal obtained with E. coli cultures, pfabA pfabR, exposed to different phenol concentrations. Inset: Signals obtained after 20-min exposure to the lowest concentration of 1.66 ppm phenol. (B) β-Galactosidase activity induction in the presence of phenol. Bacterial concentration used for the experiment was 3 × 10^7 cells/mL. Activity is presented by ΔA/Δt. Each result represents the mean of three measurements.
induced current (Figure 2B), with a clear signal difference in the range of 1.6–16 ppm. These results constitute a potential for developing a quantitative biosensor for membrane-damaging agents. The low background signal leads to a high SNR, and therefore, this biosensor is highly sensitive and accurate. To compare, the reported bioluminescence-based sensors (constructed E. coli containing a plasmid with the fabA promoter fused to the V. fischeri luxCDABE) have high background levels, which leads to reduced sensitivity and increased detection time. This reporter could detect 7.3 ppm of phenol after more than 2 h of exposure.

Signal Amplification. An additional factor responsible for the high SNR is the amplification of the reaction by the product of the enzymatic activity, which is by itself a phenol derivative. This product, p-aminophenol, obtained by β-galactosidase cleavage of p-aminophenylgalactoside (Scheme 1), further activates the fabA promoter, thus amplifying the reaction. This assumption was supported by the experiments summarized in Figure 3, indicating that PAP induces the activity of β-galactosidase when under the control of fabA promoter, and the calculated enzymatic activity measured as ΔA/Δt. Bacterial concentration used for all the experiments was 3 × 10⁷ cell/mL.

Scheme 2. Amplification Mechanism by PAP, the Enzymatic Product, and Activation of the fabA Promoter by Further Induction of β-Galactosidase Activity

containing a plasmid with the fabA promoter fused to the V. fischeri luxCDABE) have high background levels, which leads to reduced sensitivity and increased detection time. This reporter could detect 7.3 ppm of phenol after more than 2 h of exposure.

Signal Amplification. An additional factor responsible for the high SNR is the amplification of the reaction by the product of the enzymatic activity, which is by itself a phenol derivative. This product, p-aminophenol, obtained by β-galactosidase cleavage of p-aminophenylgalactoside (Scheme 1), further activates the fabA promoter, thus amplifying the reaction. This assumption was supported by the experiments summarized in Figure 3, indicating that PAP induces the activity of β-galactosidase when under the control of fabA promoter, and the calculated enzymatic activity measured as ΔA/Δt. Bacterial concentration used for all the experiments was 3 × 10⁷ cell/mL.

Scheme 2. Amplification Mechanism by PAP, the Enzymatic Product, and Activation of the fabA Promoter by Further Induction of β-Galactosidase Activity

induced current (Figure 2B), with a clear signal difference in the range of 1.6–16 ppm. These results constitute a potential for developing a quantitative biosensor for membrane-damaging agents.

The low background signal leads to a high SNR, and therefore, this biosensor is highly sensitive and accurate. To compare, the reported bioluminescence-based sensors (constructed E. coli

Scheme 1. Enzymatic Reaction Catalyzed by β-Galactosidase and the Final Products Galactopyranose and p-Aminophenol

![Scheme 1](image)

PAP is oxidized at the working electrode at V = 220 mV.

Figure 3. Electrochemical signal amplification. (A) Exposure of the E. coli sensor bacteria pfabA pfabR to the enzymatic product, PAP, and the resultant fabA promoter activation: (1) 0, (2) 1.66, and (3) 6.6 ppm phenol. (B) Comparison between pfabA pfabR and control bacteria sensitive to heavy metals, RBE23-17 exposed to PAP, and the calculated enzymatic activity measured as ΔA/Δt. Bacterial concentration used for all the experiments was 3 × 10⁷ cell/mL.

Figure 4. E. coli sensor pfabA pfabR response and induction by the phenol derivatives bisphenol A, DHBP, and nonylphenol at different toxicant concentrations. Reporter β-galactosidase activity is presented by ΔA/Δt.

Table 1. Summary of Chemicals Tested with pfabA pfabR Sensor Bacteria

<table>
<thead>
<tr>
<th>chemical</th>
<th>concn a ppm or %</th>
<th>β-galactosidase activity nA/s</th>
<th>induction factor b</th>
</tr>
</thead>
<tbody>
<tr>
<td>phenol</td>
<td>0</td>
<td>0.017</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.089</td>
<td>5.20</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>0.139</td>
<td>8.11</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>0.839</td>
<td>49.00</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>1.101</td>
<td>64.28</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>2.273</td>
<td>132.72</td>
</tr>
<tr>
<td>DHBP</td>
<td>0</td>
<td>0.008</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.013</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>0.015</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>0.039</td>
<td>4.59</td>
</tr>
<tr>
<td>nonylphenol</td>
<td>0</td>
<td>0.008</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.030</td>
<td>3.79</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>0.045</td>
<td>5.59</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>0.069</td>
<td>8.58</td>
</tr>
<tr>
<td>bisphenol A</td>
<td>0.00</td>
<td>0.007</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.008</td>
<td>no induction</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>0.006</td>
<td>no induction</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>0.008</td>
<td>no induction</td>
</tr>
<tr>
<td>hydrazine</td>
<td>0.00</td>
<td>0.017</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1.6</td>
<td>0.018</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>6.6</td>
<td>0.033</td>
<td>1.94</td>
</tr>
<tr>
<td>DDVP</td>
<td>0.00</td>
<td>0.035</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.035</td>
<td>no induction</td>
</tr>
<tr>
<td>toluene</td>
<td>0.00</td>
<td>0.042</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>46</td>
<td>0.140</td>
<td>3.35</td>
</tr>
<tr>
<td>ethanol</td>
<td>0.00</td>
<td>0.043</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>0.065</td>
<td>1.54</td>
</tr>
<tr>
<td>methanol</td>
<td>0.00</td>
<td>0.097</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>1%</td>
<td>0.114</td>
<td>1.17</td>
</tr>
</tbody>
</table>

a The concentration is described in [vol/vol] percentage (%).

b Calculated as the slope ratio between the generated current (sown as nA/s) in response to the inducer and the generated current without the inducer. The slope values represent the average of at least three experiments with relative standard deviation of less than 5% (n = 3).

Exposure to Other Phenol Derivatives and Nonphenolic Compounds. To characterize the toxicity detection potential of the recombinant bacteria containing the two plasmids pfabA and pfabR, we examined the influence of other phenol derivatives on the expression of β-galactosidase. We tested nonylphenol, bisphenol A, and 2,4-dihydroxybenzophenone (DHBP), and the results are exhibited in Figure 4.

There was a dose—response behavior to increasing concentrations of nonylphenol and DHBP, but not to bisphenol A. Non-

ylphenol is used in the production and processing of rubber, plastics, and phenolic resins. It is very toxic, LD50 of 1.3 g/kg, due to decreased weight gain, liver damage, and hemorrhages. Bacteria exposed to nonylphenol displayed a higher induction level at all concentrations in comparison to DHBP. The latter is a member of the benzophenones chemicals and is considered as a possible water pollutant and an estrogen disruptor.

Although DHBP is considered nontoxic, addition led to induction of the fabA promoter, in particular, at the 6.6 ppm concentration, probably due to interference with a membrane-associated biochemical processes. The results with bisphenol A, which showed no influence on the fabA promoter, are in accordance with those reported by Gu et al.,31,32 who showed no effect of bisphenol A in a luminescence-based biosensor.

Detection of Other Types of Toxic Chemicals. Because the fabA promoter should sense chemicals that induce membrane damage, we tested the effect of additional relevant compounds: hydrazine (caustic reducing agent frequently found in industrial wastewater), the organophosphate DDVP (2,2-dichlorovinyl dimethyl phosphate), toluene (aromatic hydrocarbon), ethanol, and methanol (Table 1). The sensor bacteria responded to hydrazine, toluene, and ethanol, but there was a low response to methanol and no response to DDVP. This specificity of the response may be useful to determine the nature of the toxicant and to characterize its involvement in membrane damage.

CONCLUSIONS

Rapid and sensitive toxicity monitoring provides valuable information on the level of toxicity of wastewater and the quality of drinking water. Therefore, development of biosensors, which offers a high signal-to-noise ratio, is highly important. Here, we describe the development of an improved membrane-damage biosensor that produces very low background signal. Moreover, enhanced sensitivity was achieved by the enzymatic product PAP, which further activated the fabA promoter. This biosensor contains two plasmids: pfabA encoding β-galactosidase under the control of the fabA promoter; and pfabR, which encodes the repressor of this promoter. This sensor is highly sensitive, rapid, and responds to very low concentrations of phenol (1.6 ppm) within 20 min. The recombinant bacteria respond to nonylphenol, DHBP, toluene, hydrazine, and ethanol while remaining insensitive to bisphenol A and the organophosphate DDVP. The use of whole cell sensors with amperometric measurements enables the fast, easy to operate, and economical sensing of water toxicity.

Received for review November 29, 2005. Accepted April 27, 2006.

AC052096R